
TREK-USER-049

TREK

TELEMETRY PROCESSING .NET

APPLICATION PROGRAMMING

INTERFACE (API)

REFERENCE MANUAL

November 2012

Approved for Public Release; Distribution is Unlimited.

 TREK-USER-049

 i

TABLE OF CONTENTS

PARAGRAPH PAGE

1 Introduction ... 1

2 Related Documents ... 1

3 Telemetry Processing .NET API Implementation ... 1

4 Experience Level Requirements .. 1

5 Detailed Telemetry Processing .NET API Information Available In On-Line

Help .. 2

6 Telemetry Processing .NET API Library, Function Prototypes, and Constants 2

7 Performance Considerations.. 2

8 Telemetry Processing .NET API Function Descriptions 3

8.1 Initialize_Packet_Properties ... 3
8.2 Initialize_Recording_Properties ... 5
8.3 Add_A_Packet ... 6
8.4 Activate_Packet.. 7
8.5 Update_Packet_Recording_Properties ... 2
8.6 Start_Packet_Recording ... 2
8.7 Stop_Packet_Recording ... 3
8.8 Get_Packet_Properties ... 3
8.9 Get_Packet_Status.. 3
8.10 Get_Packet_List .. 4
8.11 Get_Telemetry_Statistics .. 4
8.12 Delete_Packet .. 5
8.13 Refresh_Telemetry_Processing_Main_Window ... 6
8.14 Get_TP_User_API_Return_Code_As_String ... 6

9 Telemetry Processing .NET API Parameters ... 7

10 Telemetry Processing .NET API Structures ... 8

Packet_Properties Structure ... 8
Record_Properties Structure ...11

11 Telemetry Processing .NET API Return Codes ... 12

Appendix A Acronyms ... 18

Appendix B Glossary .. 20

 TREK-USER-039

1

1 Introduction

The TReK Telemetry Processing Application Programming Interface (API) was created

to provide an easy way to programmatically perform Telemetry Processing functions

from a user developed software program. The Telemetry Processing Application

Programming Interface (trek_tp_user_api.dll) has an ANSI C interface. It was developed

for use with commercial products that extend an ANSI C interface. The TReK Telemetry

Processing .NET API contains the same functions that are in the TReK Telemetry

Processing API. It was developed for use with the Microsoft.NET library.

Note: The TReK Telemetry .NET DLL (trek_telemetry_dotnet_api.dll) contains the

functions in the TReK Telemetry .NET Application Programming Interface and the

TReK Telemetry Processing .NET Application Programming Interface.

2 Related Documents

There are several documents that should be reviewed before reading this document. They

are listed in order of priority and are as follows:

TReK Getting Started Guide (TREK-USER-001)

TReK Telemetry Tutorial (TREK-USER-002)

TReK Telemetry Processing Tutorial (TREK-USER-017)

TReK Telemetry Processing User Guide (TREK-USER-003)

It is strongly recommended that you read these documents before you read this document.

This document assumes you are familiar with common Telemetry Processing functions

such as Adding a Packet and Activating a Packet. Many of the concepts presented in this

document will not make sense unless you are familiar with the information in the TReK

Telemetry Processing User Guide and Telemetry Processing Tutorial.

3 Telemetry Processing .NET API Implementation

The TReK Telemetry Processing .NET API has been implemented as a Windows

Dynamic Linked Library (DLL) which is comprised of multiple managed C++ functions.

These functions provide the capability to perform Telemetry Processing functions

programmatically. The TReK Telemetry Processing .NET API DLL is designed to be

thread safe meaning a multithreaded application may safely use the API’s functions in all

of the application’s threads.

4 Experience Level Requirements

To use the TReK Telemetry Procssing .NET API you must be familiar with the .NET

compatible programming languages, the Telemetry Processing API functions, and the

COTS product you plan to use in conjunction with the Telemetry Processing .NET API.

 TREK-USER-039

2

Neither this document nor any other TReK documentation will address how to use the

COTS products. Please refer to the documentation that came with the COTS product for

that type of information.

5 Detailed Telemetry Processing .NET API Information Available In

On-Line Help

This document does not contain all the information available about the TReK Telemetry

Processing .NET API. Please reference the Telemetry Processing .NET API Reference

Manual On-Line Help for details about Telemetry Processing .NET API function input

arguments, output arguments, return codes, and example code.

6 Telemetry Processing .NET API Library, Function Prototypes, and

Constants

In order to use the TReK Telemetry Processing .NET API you must have access to the

TReK Telemetry Processing .NET API library, function prototypes, and constant

definitions. Each COTS product provides access to libraries, function prototypes, and

constants in a different way. For example, when you use Visual Studio 2005 you will

add the reference file (trek_telemetry_dotnet_api.dll), that contains the TReK Telemetry

Processing .NET API function prototypes and constant definitions.

7 Performance Considerations

The TReK Telemetry Processing .NET API provides programmatic access to Telemetry

Processing functions. It is possible to overwhelm the Telemetry Processing application

by initiating a large number of requests rapidly one after another. For example, suppose

you want to add and activate 20 packets. While it may be possible to rapidly add the

packets, activating the packets will be both memory and compute intensive. Therefore,

adding and activating all 20 packets rapidly one after another may result in one or more

failed activations. We recommend that you use Sleep statements to slow the process

down a bit and allow the Telemetry Processing application to finish its work in a

moderated fashion. In the case of activating multiple packets, adding a 100 millisecond

sleep statement in between each ActivatePacket call may be all it takes to moderate the

activation activities. Each situation will be different, but be aware that the following

types of functions can be both memory and compute intensive and warrant caution:

ActivatePacket

DeletePacket

 TREK-USER-039

3

8 Telemetry Processing .NET API Function Descriptions

This section contains the function definition for each function in the Telemetry

Processing.NET API. For detailed information on the input parameters, return values and

examples see the online help for the Telemetry Processing.NET API.

8.1 Initialize_Packet_Properties

DESCRIPTION

This function initializes a packet_properties structure as described below. The

calling application is responsible for creating the memory for the

Packet_Properties structure. It is a good idea to call this function before

populating your Packet_Properties structure with your packet properties data.

This ensures that all members of the structure have been initialized. Please note

that this data does not define a valid packet since there are several fields that do

not contain valid input data (e.g., the packet_id and database members are

initialized to empty strings).

Structure Member Initialized Value

packet_id Empty String

database Empty String

packet_type PACKET_TYPE.Pdss_Payload

data_mode DATA_MODE.Real_Time

processing PACKET_PROCESSING_TYPE.process_entire_packet

packet_source DEVICE_CATEGORY_TYPE.network

network_protocol PACKET_NETWORK_PROTOCOL_TYPE.udp

local_ip_address 127.0.0.1

local_port_number 6100

use_join_multicast_flag JOIN_MULTICAST_ADDRESS_GROUPS_TYPE.join_multicast_off

multicast_address_list.number_addresses 0

remote_server_ip_address Empty String

remote_server_port_number 0

device_reference DEVICE_REFERENCE_TYPE.port_name_reference

device_port_name COM1

device_guid Empty String

device_api_library Empty String

packet_rate_mode RATE_MODE_TYPE.pkts_per_sec_mode

expected_pkts_per_sec 1

expected_bits_per_sec 1000

SYNOPSIS
 using trek;

static int Initialize_Packet_Properties

 TREK-USER-039

4

 ([System::Runtime::InteropServices::Out]packet_properties

%packet_properties_ptr

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

 TREK-USER-039

5

8.2 Initialize_Recording_Properties

DESCRIPTION

This function initializes a record_properties structure as described below. The

calling application is responsible for creating the memory for the

record_properties structure. It is a good idea to call this function before

populating your record_properties structure with your recording properties. This

ensures that all members of the structure have been initialized. Please note that

this data does not define valid recording properties since there are several fields

that do not contain valid input data (e.g., the base_filename and directory

members are initialized to empty strings).

Structure Member Initialized Value

base_filename Empty String

directory Empty String

maximum_file_size 10485760

use_max_time_file_is_open_flag MAX_TIME_FILE_IS_OPEN_TYPE.max_time_file_is_open_off

maximum_time_file_is_open 15

use_max_time_directory_is_open_fla

g

MAX_TIME_DIR_IS_OPEN_TYPE.max_time_dir_is_open_off

close_directory_mode CLOSE_DIRECTORY_MODE_TYPE.close_directory_in_months_

mode

SYNOPSIS
 using trek;

static int Initialize_Recording_Properties

 ([System::Runtime::InteropServices::Out]record_properties

%record_properties_ptr

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

 TREK-USER-039

6

8.3 Add_A_Packet

DESCRIPTION

This function sends a request to add a packet. Please review the information in

the Structures section for details about setting properties in the Packet_Properties

structure.

The refresh_flag is an optional input parameter. Valid values are:

refresh_off and refresh_on. If you do not include it, the value will be set to

refresh_on. Refreshing the Telemetry Processing main window can be a CPU

intensive function when there are a large number of packets in the packet list.

When this flag is set to refresh_off, it tells the Telemetry Processing application

not to refresh the Telemetry Processing main window while performing the

AddAPacket function. This is useful if you are calling the AddAPacket function

multiple times and only need the main window to refresh after you have

completed adding all the packets you wish to add to the packet list. This provides

a way to reduce the number of times the main window is updated, thereby

increasing performance.

Note: There are other functions that can cause the Telemetry Processing main

window to update. So it is possible for the main window to refresh even if you

have set this flag to refresh_off. This flag only controls the refresh associated

with this function’s activity.

SYNOPSIS
 using trek;

static int Add_A_Packet

 (packet_properties packet_properties_ptr

);

static int Add_A_Packet

 (packet_properties spacket_properties_ptr,

 REFRESH_TYPE refresh_flag// = refresh_on

)

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

 TREK-USER-039

7

8.4 Activate_Packet

DESCRIPTION

This function sends a request to activate a packet. This function will return

SUCCESS if it successfully initiates the activation process. The event

corresponding to the event name passed in will be signaled when the activation

function completes. The signal does not indicate that the function was successful.

You must request a packet status or a packet list to determine whether the

function completed successfully. It is valid to leave the event_name parameter

blank. If you pass in an empty string, the Telemetry Processing application will

not create or signal the event.

The refresh_flag is an optional input parameter. Valid values are:

refresh_off and refresh_on. If you do not include it, the value will be set to

refresh_on. Refreshing the Telemetry Processing main window can be a CPU

intensive function when there are a large number of packets in the packet list.

When this flag is set to refresh_off, it tells the Telemetry Processing application

not to refresh the Telemetry Processing main window while performing the

ActivatePacket function. This is useful if you are calling the ActivatePacket

function multiple times and only need the main window to refresh after all the

packets have activated. This provides a way to reduce the number of times the

main window is updated, thereby increasing performance.

Note: There are other functions that can cause the Telemetry Processing main

window to update. So it is possible for the main window to refresh even if you

have set this flag to refresh_off. This flag only controls the refresh associated

with this function’s activity.

Please review the information in the Performance Considerations section of this

document for important performance information that should be considered when

using this function.

SYNOPSIS

using trek;

static int Activate_Packet

(System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode

);

static int Activate_Packet

(System::String^ packet_id,

 PACKET_TYPE packet_type,

DATA_MODE data_mode,

System::String^ event_name

);

static int Activate_Packet

(System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode,

 REFRESH_TYPE refresh_flag

);

 TREK-USER-039

2

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

8.5 Update_Packet_Recording_Properties

DESCRIPTION

This function sends a request to update a packet’s recording properties. Packet

recording must be off. Please review the information in the Structures section for

details about setting properties in the Record_Properties structure.

SYNOPSIS
 using trek;

static int Update_Packet_Recording_Properties

 (System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode,

 record_properties record_properties_ptr

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

8.6 Start_Packet_Recording

DESCRIPTION

This function sends a request to start packet recording. Packet recording must be

off.

SYNOPSIS
 using trek;

static int Start_Packet_Recording

 (System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

 TREK-USER-039

3

8.7 Stop_Packet_Recording

DESCRIPTION

This function sends a request to stop packet recording. Packet recording must be

on.

SYNOPSIS
 using trek;

static int Stop_Packet_Recording

 (System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

8.8 Get_Packet_Properties

DESCRIPTION

This function requests packet properties information for a specific packet.

SYNOPSIS
 using trek;

static int Get_Packet_Properties

 ([System::Runtime::InteropServices::Out]packet_properties

%packet_properties_ptr

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

8.9 Get_Packet_Status

DESCRIPTION

This function requests status information for a specific packet.

SYNOPSIS
 using trek;

static int Get_Packet_Status

 (System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode,

 [System::Runtime::InteropServices::Out]packet_status

%packet_status_ptr

 TREK-USER-039

4

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

8.10 Get_Packet_List

DESCRIPTION

This function requests a copy of the Telemetry Processing packet list.

SYNOPSIS
 using trek;

static int Get_Packet_List

 ([System::Runtime::InteropServices::Out]packet_list_properties

%packet_list_ptr

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

8.11 Get_Telemetry_Statistics

DESCRIPTION

This function requests telemetry statistics data. The function returns all the

telemetry statistics data that is displayed in the Telemetry Processing application’s

Telemetry Processing Statistics dialog.

SYNOPSIS
 using trek;

 static int Get_Telemetry_Statistics

 ([System::Runtime::InteropServices::Out]telemetry_statistics

%telemetry_statistics_ptr

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

 TREK-USER-039

5

8.12 Delete_Packet

DESCRIPTION

This function sends a request to delete a packet. This function will return

SUCCESS if it successfully initiates the delete process. The event corresponding

to the event name passed in will be signaled when the delete function completes.

The signal does not indicate that the function was successful. You must request a

packet status or a packet list to determine whether the function completed

successfully. It is valid to leave the event_name parameter blank. If you pass in

an empty string, the Telemetry Processing application will not create or signal the

event.

Please review the information in the Performance Considerations section of this

document for important performance information that should be considered when

using this function.

SYNOPSIS
 using trek;

static int Delete_Packet

 (System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode

);

static int Delete_Packet

 (System::String^ packet_id,

 PACKET_TYPE packet_type,

 DATA_MODE data_mode,

 System::String^ event_name

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

 TREK-USER-039

6

8.13 Refresh_Telemetry_Processing_Main_Window

DESCRIPTION

This function sends a request to the Telemetry Processing application to refresh

the data in the main window. Refreshing the Telemetry Processing main window

can be a CPU intensive function when there are a large number of packets in the

packet list. Several Telemetry Processing API functions, such as the AddAPacket

function, contain an input argument called “refresh_flag”. When this flag is set to

refresh_off, it tells the Telemetry Processing application not to refresh the

Telemetry Processing main window while performing the requested function.

This is useful if you are calling the AddAPacket function multiple times and only

need the main window to refresh after you have completed adding all the packets

you wish to add to the packet list. This provides a way to reduce the number of

times the main window is updated, thereby increasing performance.

SYNOPSIS
 using trek;

static int Refresh_Telemetry_Processing_Main_Window();

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

8.14 Get_TP_User_API_Return_Code_As_String

DESCRIPTION

This function provides a way to retrieve a string value that corresponds to a

Telemetry Processing API integer value return code.

SYNOPSIS
 using trek;

static int Get_TP_User_API_Return_Code_As_String

 (System::Int32 code,

 System::UInt32 size_of_data,

 [System::Runtime::InteropServices::Out]System::String^ %message

);

Note: The trek_telemetry_dotnet_api library must be referenced in your

application.

 TREK-USER-039

7

9 Telemetry Processing .NET API Parameters

Parameters Data Type Description
packet_properties_ptr PACKET_PROPERTIES A structure defined in trek. You must allocate

memory for this variable and populate the

appropriate structure members. (Input)
packet_id System::String The Packet ID (usually the APID). (Input)
packet_type PACKET_TYPE The packet type associated with the parameter.

Syntax is PACKET_TYPE.<value> where value is

one of the following: Pdss_Payload, Pdss_Core,

Gse, Gse_Merge, Cdp, Udsm, Rpsm, Scs, Ccsds,

Fdp, Vcdu, Express, Prcu, Ufo, or Imaq_Ascii.

Example: PACKET_TYPE.Pdss_Payload. (Input)
data_mode DATA_MODE The data mode. Syntax is DATA_MODE.<value>

where value is one of the following: Real_Time,

Dump1, Dump2, Dump3, Playback1, Playback 2,

Playback 3, Playback 4, Playback 5, Playback 6,

Playback 7, Playback 8,Playback 9, Playback 10,

Playback 11, None. Example:

DATA_MODE.Real_Time. (Input)

event_name System::String The name of the event that should be signaled when

the requested function completes. It is valid to leave

this variable blank. If you pass in an empty string,

the Telemetry Processing application will not create

or signal the event. (Input)
refresh_flag

REFRESH_TYPE Refresh flag. Syntax is REFRESH_TYPE.<value>

where value is one of the following: refresh_off,

refresh_on. Example: REFRESH_TYPE.refresh_on.

(Input)

record_properties_ptr
RECORD_PROPERTIES A structure defined in trek. You must allocate

memory for this variable and populate the

appropriate structure members. (Input)
packet_status_ptr PACKET_STATUS A structure defined in trek. You must allocate

memory for this variable. (Output)
packet_list_ptr PACKET_LIST_PROPERTIES A structure defined in trek. You must allocate

 TREK-USER-039

8

memory for this variable. (Output)
telemetry_statistics_ptr TELEMETRY_STATISTICS A structure defined in trek. You must allocate

memory for this variable. (Output)
code System::UInt32 A Telemetry Processing API return code. (Input)
size_of_data_ptr System::Int32 The size of data allocated by the calling program.

You must specify enough space for the data to be

copied. (Input)
message System::String Message string containing a description of the return

code as a text string. (Output)

10 Telemetry Processing .NET API Structures

This section provides information on populating structures that are passed in to Telemetry Processing API library functions. In some

cases these structures contain members that indicate whether data in other structure members should be used. For example, in the

Packet_Properties structure there is a member called “use_join_multicast_flag”. This member is used to specify whether the “Join

Multicast Address Groups” capability is used. If this member is set to “join_multicast_off” then the Telemetry Processing

application will ignore the data in the multicast_address_list member. If this member is set to “join_multicast_on” then

the Telemetry Processing application will expect the multicast_address_list member to contain one or more multicast address

groups that should be joined. The information in the tables below describes the purpose of each structure member and whether that

member is always used (it’s a required field) or if its use depends on the value of another member (and therefore may be ignored). For

more information about how this data is used by the Telemetry Processing application, please reference the Telemetry Processing User

Guide.

Packet_Properties Structure

The Packet_Properties structure is used to pass in packet properties.

Structure Member Description

packet_id The Packet ID (or APID). The packet_id identified here must be in the

database identified in the database member. (Required)

packet_type The packet type associated with the parameter. Syntax is

PACKET_TYPE.<value> where value is one of the following:

Pdss_Payload, Pdss_Core, Gse, Gse_Merge, Cdp, Udsm, Rpsm, Scs,

Ccsds, Fdp, Vcdu, Express, Prcu, Ufo, or Imaq_Ascii. Example:

PACKET_TYPE.Pdss_Payload. (Required)

 TREK-USER-039

9

Structure Member Description

data_mode The data mode. Syntax is DATA_MODE.<value> where value is one

of the following: Real_Time, Dump1, Dump2, Dump3, Playback1,

Playback 2, Playback 3, Playback 4, Playback 5, Playback 6, Playback

7, Playback 8,Playback 9, Playback 10, Playback 11, None. Example:

DATA_MODE.Real_Time. (Required)

database The Database. This must be a complete path. The packet_id identified must

be in the database identified by this member. (Required).

processing The processing to apply to the packets received. Syntax is

PACKET_PRECESSING_TYPE.<value> where value is one of the

following: off, pass_thru, process_entire_packet,
process_on_request_hybrid, process_on_request_only,

process_selected_parameters.

Example: PACKET_PRECESSING_TYPE.off (Required)

packet_source Indicates whether the data will arrive via a network interface or a device

interface. Syntax is DEVICE_CATEGORY_TYPE.<value> where

value is one of the following: network, device. Example:

DEVICE_CATEGORY_TYPE.network (Required)

network_protocol The network protocol to use when receiving packets via a network interface.

Syntax is PACKET_NETWORK_PROTOCOL_TYPE.<value> where

value is one of the following: udp, tcp_server, tcp_client.

This field is required if the packet_source member is set to network.

Otherwise this field is ignored. Example:

PACKET_NETWORK_PROTOCOL_TYPE.udp

local_ip_address The local IP address to be used when receiving packets via a network

interface. This must be a valid unicast IP address (loopback address is

considered valid). This field is required if the packet_source member is

set to network. Otherwise this field is ignored.

local_port_number The local port number to be used when receiving packets via a network

interface. This field is required if the packet_source member is set to

network. Otherwise this field is ignored.

use_join_multicast_flag Indicates whether the Join Multicast Address Groups feature should be used.

Syntax is JOIN_MULTICAST_ADDRESS_GROUPS_TYPE.<value>

where value is one of the following: join_multicast_off,

join_multicast_on. This field is required if the packet_source

member is set to network and the network_protocol member is set to

udp. Otherwise this field is ignored. Example:

JOIN_MULTICAST_ADDRESS_GROUPS_TYPE.join_multicast_off.

 TREK-USER-039

10

Structure Member Description

multicast_address_list The multicast address list information. This field is required if the

packet_source member is set to network and the
use_join_multicast_flag member is set to join_multicast_on.

Otherwise this field is ignored.

remote_server_ip_address The remote server IP address. This must be a valid unicast address. This

field is required if the packet_source member is set to network and

the network_protocol member is set to tcp_client. Otherwise this

field is ignored.

remote_server_port_number The remote server port number. This field is required if the

packet_source member is set to network and the
network_protocol member is set to tcp_client. Otherwise this

field is ignored.
device_reference Indicates whether the device identifier provided is a port_name, a GUID, or

an API Library. Syntax is DEVICE_REFERENCE_TYPE.<value>

where value is one of the following: port_name_reference,

guid_reference, or api_library_reference. This field is required

if the packet_source member is set to device. Otherwise this field is

ignored. Example: DEVICE_REFERENCE_TYPE.port_name_reference

device_port_name The device port name. This field is required if the packet_source member

is set to device and the device_reference member is set to

port_name_reference. Otherwise this field is ignored.

device_guid The device GUID. This field is required if the packet_source member is

set to device and the device_reference member is set to

guid_reference. Otherwise this field is ignored.

device_api_library The device API Library. This field is required if the packet_source

member is set to device and the device_reference member is set to

api_library_reference. Otherwise this field is ignored.

packet_rate_mode Indicates whether the packet rate provided is in packets per second or bits per

second. Syntax is RATE_MODE_TYPE.<value> where value is one of

the following: pkts_per_sec_mode, bits_per_sec_mode.

Example: RATE_MODE_TYPE.pkts_per_sec_mode (Required)

expected_pkts_per_sec The expected packet rate expressed in packets per second. This field is

required if the packet_rate_mode member is set to

pkts_per_sec_mode. Otherwise this field is ignored.

expected_bits_per_sec The expected packet rate expressed in bits per second. This field is required

if the packet_rate_mode member is set to bits_per_sec_mode.

Otherwise this field is ignored.

 TREK-USER-039

11

Record_Properties Structure

The Record_Properties structure is used to pass in recording properties.

Structure Member Description

base_filename The base filename for the recording files. (Required)
directory The directory information for the recording files. This must be a complete

path. (Required)
maximum_file_size The maximum file size for the recording files. This value must be greater

than or equal to 10240 and less than or equal to 1048576000. (Required)

use_max_time_file_is_open_flag Indicates whether the Maximum Time File Is Open feature should be used.

Syntax is MAX_TIME_FILE_IS_OPEN_TYPE.<value> where value

is one of the following: max_time_file_is_open_off,

max_time_file_is_open_on. Example:

MAX_TIME_FILE_IS_OPEN_TYPE.
max_time_file_is_open_off(Required)

maximum_time_file_is_open The maximum time (in minutes) the recording files should be open. The

maximum time file is open value must be greater than or equal to 1 and less

than 71582. This field is required if the

use_max_time_file_is_open_flag member is set to

max_time_file_is_open_on. Otherwise this field is ignored.

use_max_time_directory_is_open_flag Indicates whether the Maximum Time Directory Is Open feature should be

used. Syntax is MAX_TIME_DIR_IS_OPEN_TYPE.<value> where

value is one of the following: max_time_dir_is_open_off,

max_time_dir_is_open_on. Example:

MAX_TIME_DIR_IS_OPEN_TYPE.max_time_dir_is_open_off
(Required)

close_directory_mode The close directory mode. Syntax is

CLOSE_DIRECTORY_MODE_TYPE.<value> where value is one of

the following: close_directory_in_days_mode,
close_directory_in_weeks_mode,

close_directory_in_months_mode,

close_directory_in_years_mode. This field is required if the

use_max_time_directory_is_open_flag member is set to
max_time_dir_is_open_on. Otherwise this field is ignored. Example:

 TREK-USER-039

12

Structure Member Description

CLOSE_DIRECTORY_MODE_TYPE.close_directory_in_days_mode

11 Telemetry Processing .NET API Return Codes

Integer

Return

Value

Return Code Value Description

0 api_SUCCESS The requested function completed successfully

1 api_FAIL The requested function failed and a specific error could not

be determined.

44001 api_INVALID_PACKET_ID This error indicates that the packet id value passed in was

invalid. The packet id must be in the database identified.

44002 api_INVALID_PACKET_TYPE This error indicates that the packet type value passed in was

invalid. Syntax is PACKET_TYPE.<value> where value is

one of the following: Pdss_Payload, Pdss_Core, Gse,

Gse_Merge, Cdp, Udsm, Rpsm, Scs, Ccsds, Fdp, Vcdu,

Express, Prcu, Ufo, or Imaq_Ascii. Example:

PACKET_TYPE.Pdss_Payload.

44003 api_INVALID_DATA_MODE This error indicates that the data mode value passed in was

invalid. Syntax is DATA_MODE.<value> where value is

one of the following: Real_Time, Dump1, Dump2, Dump3,

Playback1, Playback 2, Playback 3, Playback 4, Playback 5,

Playback 6, Playback 7, Playback 8,Playback 9, Playback

10, Playback 11, None. Example:

DATA_MODE.Real_Time.

44004 api_INVALID_PROCESSING This error indicates that the processing value passed in was

invalid. Syntax is

PACKET_PRECESSING_TYPE.<value> where value is

one of the following: off, pass_thru,
process_entire_packet,

process_on_request_hybrid,

process_on_request_only,

process_selected_parameters.

Example: PACKET_PRECESSING_TYPE.off.

44005 api_PACKET_NOT_FOUND This error indicates that the packet identified cannot be

found.

44006 api_DUPLICATE_PACKET This error indicates that the packet to be added already

 TREK-USER-039

13

Integer

Return

Value

Return Code Value Description

exists.

44007 api_PACKET_ALREADY_ACTIVE This error indicates that the packet to be activated is already

active.

44008 api_INVALID_DATABASE This error indicates that the database value passed in was

invalid.

44009 api_INVALID_PACKET_SOURCE This error indicates that the packet source value passed in

was invalid. Valid values are: network, device.

44010 api_INVALID_NETWORK_PROTOCOL This error indicates that the network protocol value passed

in was invalid. Syntax is

PACKET_NETWORK_PROTOCOL_TYPE.<value>

where value is one of the following: udp,

tcp_server, tcp_client. This field is required if

the packet_source member is set to network.

Otherwise this field is ignored. Example:

PACKET_NETWORK_PROTOCOL_TYPE.udp.

44011 api_INVALID_LOCAL_IP_ADDRESS This error indicates that the local IP Address value passed in

was invalid.

44012 api_INVALID_LOCAL_PORT_NUMBER This error indicates that the local port number value passed

in was invalid.

44013 api_INVALID_USE_JOIN_MULTICAST_FLAG This error indicates that the use join multicast flag value

passed in was invalid. Syntax is

JOIN_MULTICAST_ADDRESS_GROUPS_TYPE.<value

> where value is one of the following:
join_multicast_off, join_multicast_on.

This field is required if the packet_source member is

set to network and the network_protocol

member is set to udp. Otherwise this field is ignored.

Example:

JOIN_MULTICAST_ADDRESS_GROUPS_TYPE.join_m

ulticast_off.
44014 api_INVALID_MULTICAST_ADDRESS_LIST This error indicates that the multicast address list

information passed in was invalid. If you are joining one or

more multicast address lists, be sure that the number of

addresses value matches the number of addresses provided.

Also check to be sure all addresses provided are valid

multicast addresses.

44015 api_INVALID_PACKET_RATE_MODE This error indicates that the packet rate mode value you

 TREK-USER-039

14

Integer

Return

Value

Return Code Value Description

passed in was invalid. Syntax is

RATE_MODE_TYPE.<value> where value is one of the

following: pkts_per_sec_mode,

bits_per_sec_mode. Example:

RATE_MODE_TYPE.pkts_per_sec_mode.

44016 api_INVALID_EXPECTED_PACKETS_PER_SECOND_RATE This error indicates that expected_pkts_per_sec value

you passed in was invalid. The expected packets per second

value must be greater than 0.

44017 api_INVALID_EXPECTED_BITS_PER_SECOND_RATE This error indicates that expected_bits_per_sec value

you passed in was invalid. The expected bits per second

value must be greater than 0.

44018 api_PACKET_TYPE_REQUIRES_NONE_DATA_MODE This error indicates that the packet type passed in must be

used with a None data mode and the data mode passed in

was not None.

44019 api_INVALID_USE_OF_NONE_DATA_MODE This error indicates that the data mode passed in was None,

but it is not legal to use the None data mode with the packet

type passed in.

44020 api_PORT_NUMBER_PACKET_TYPE_CONFLICT This error indicates that the port number you specified is in

conflict with the ports already in use by other packets. For

example, Suitcase Simulator packets must be sent to a

different port than PRCU packets. If an existing Suitcase

Simulator packet is already using port 6100, then you cannot

add a PRCU packet with a port of 6100.

44021 api_PACKET_IN_USE This error will occur if you attempt to update a packet while

another user is updating the packet. Other users include the

Telemetry Processing User Interface user and other

programmatic API users.

44022 api_INVALID_REMOTE_SERVER_IP_ADDRESS This error indicates that the remote server IP address you

passed in was invalid.

44023 api_INVALID_REMOTE_SERVER_PORT_NUMBER This error indicates that the remote server port number you

passed in was invalid.

44024 api_INVALID_DEVICE_REFERENCE This error indicates that the device reference value you

passed in was invalid. Valid values are:

port_name_reference, guid_reference.

44025 api_INVALID_DEVICE_PORT_NAME This error indicates that the device port name you passed in

was invalid.

44026 api_INVALID_DEVICE_GUID This error indicates that the device GUID you passed in was

 TREK-USER-039

15

Integer

Return

Value

Return Code Value Description

invalid.

44027 api_INVALID_DEVICE_API_LIBRARY This error indicates that the device API Library you passed

in was invalid.

44028 api_RECORDING_MUST_BE_OFF_DURING_UPDATE This error will occur if you attempt to update recording

properties while recording is on.

44029 api_RECORDING_DIRECTORY_INVALID This error indicates that you have passed in a recording

directory that is invalid.

44030 api_RECORDING_BASE_FILENAME_INVALID This error indicates that you have passed in a recording base

filename that is invalid. This could be the result of using an

illegal character in the base filename. The following

characters are considered illegal: \ / : * ? < > |

44031 api_INVALID_USE_MAX_TIME_FILE_IS_OPEN_FLAG This error indicates that the

use_max_time_file_is_open_flag value you passed

in was invalid. Syntax is

MAX_TIME_FILE_IS_OPEN_TYPE.<value> where value

is one of the following:
max_time_file_is_open_off,

max_time_file_is_open_on. Example:

MAX_TIME_FILE_IS_OPEN_TYPE.max_time_dir_is_ope

n_off

44032 api_INVALID_USE_MAX_TIME_DIR_IS_OPEN_FLAG This error indicates that the

use_max_time_directory_is_open_flag value you

passed in was invalid. Syntax is

MAX_TIME_DIR_IS_OPEN_TYPE.<value> where value

is one of the following:
max_time_dir_is_open_off,

max_time_dir_is_open_on. Example:

MAX_TIME_DIR_IS_OPEN_TYPE.max_time_dir_is_ope

n_off

44033 api_INVALID_CLOSE_DIRECTORY_MODE This error indicates that the close directory mode value you

passed in was invalid. Syntax is

CLOSE_DIRECTORY_MODE_TYPE.<value> where

value is one of the following:
close_directory_in_days_mode,

close_directory_in_weeks_mode,

close_directory_in_months_mode,

close_directory_in_years_mode. This field is

 TREK-USER-039

16

Integer

Return

Value

Return Code Value Description

required if the
use_max_time_directory_is_open_flag

member is set to max_time_dir_is_open_on.

Otherwise this field is ignored. Example:

CLOSE_DIRECTORY_MODE_TYPE.close_directory_in_

days_mode

44034 api_RECORDING_MAXIMUM_FILE_SIZE_INVALID This error indicates that the maximum file size you passed

in was invalid. The maximum file size must be greater than

or equal to 10240 and less than or equal to 1048576000.

44035 api_RECORDING_MAXIMUM_TIME_FILE_IS_OPEN_INVALI

D

This error indicates that the maximum time file is open

value you passed in was invalid. The maximum time file is

open value must be greater than or equal to 1 and less than

71582.

44036 api_RECORDING_ALREADY_STARTED This error occurs if you attempt to start packet recording and

recording is already in progress.

44037 api_RECORDING_ALREADY_STOPPED This error occurs if you attempt to stop packet recording and

recording is in an off or stopped state.

44038 api_PACKET_MUST_BE_ACTIVE This error occurs if you attempt to perform a function that

can only be performed when a packet is active and the

packet is currently inactive

44039 api_PACKET_SHUTDOWN_IN_PROGRESS This error occurs if you attempt to perform a function on a

packet that is currently being shutdown (deactivated,

deleted, etc.).

44040 api_RECONFIGURATION_IN_PROGRESS This error occurs if you attempt to perform a function while

the Telemetry Processing application is in the middle of a

reconfiguration (the Telemetry Processing graphical user

interface user has initiated a New, Open, etc.).

44041 api_PACKET_ACTIVATION_IN_PROGRESS This error indicates that the packet you are attempting to

modify is being activated.

44042 api_INVALID_REFRESH_FLAG This error indicates that the refresh_flag value you

passed in was invalid. Syntax is REFRESH_TYPE.<value>

where value is one of the following: refresh_off,

refresh_on. Example: REFRESH_TYPE.refresh_off

44043 api_TIMEOUT_WHILE_WAITING_TO_ACCESS_DATABASE This error indicates that a timeout occurred while waiting to

access the database.

44044 api_NOT_ENOUGH_SPACE This error indicates that you have not allocated enough

space to hold the information that needs to be returned.

 TREK-USER-039

17

Integer

Return

Value

Return Code Value Description

44045 api_INVALID_API_RETURN_CODE This error will occur if you pass an invalid Telemetry

Processing API return code to the

Get_TP_User_API_Return_Code_As_String function.

44046 api_NO_STATISTICS_DATA_AVAILABLE This error indicates that there is no statistics data available.

44047 api_ERROR_ACCESSING_STATISTICS_DATA This error indicates that an error occurred while attempting

to access a file that contains the statistics data being

requested.

44048 api_TIMEOUT_ERROR This error indicates that a timeout occurred when the

Telemetry Processing API library tried to communicate with

the Telemetry Processing application.

TREK-USER-003

 18

Appendix A Acronyms
Note: This acronym list is global to all TReK documentation. Some acronyms listed

may not be referenced within this document.

AOS Acquisition of Signal

API Application Programming Interface

APID Application Process Identifier

ASCII American Standard Code for Information Interchange

CAR Command Acceptance Response

CAR1 First Command Acceptance Response

CAR2 Second Command Acceptance Response

CCSDS Consultative Committee for Space Data Systems

CDB Command Database

CDP Custom Data Packet

COR Communication Outage Recorder

COTS Commercial-off-the-shelf

CRR Command Reaction Response

DSM Data Storage Manager

EHS Enhanced Huntsville Operations Support Center (HOSC)

ERIS EHS Remote Interface System

ERR EHS Receipt Response

EXPRESS Expediting the Process of Experiments to the Space Station

ES Expected State

FAQ Frequently Asked Question

FDP Functionally Distributed Processor

FSV Flight System Verifier

FSV1 First Flight System Verifier

FSV2 Second Flight System Verifier

FPD Flight Projects Directorate

FTP File Transfer Protocol

GMT Greenwich Mean Time

GRT Ground Receipt Time

GSE Ground Support Equipment

HOSC Huntsville Operations Support Center

ICD Interface Control Document

IMAQ ASCII Image Acquisition ASCII

IP Internet Protocol

ISS International Space Station

LDP Logical Data Path

LES Limit/Expected State

LOR Line Outage Recorder

LOS Loss of Signal

MCC-H Mission Control Center – Houston

MOP Mission, Operational Support Mode, and Project

MSFC Marshall Space Flight Center

MSID Measurement Stimulus Identifier

TREK-USER-003

 19

NASA National Aeronautics and Space Administration

OCDB Operational Command Database

OS Operating System

PC Personal Computer, also Polynomial Coefficient

PCDB POIC Project Command Database

PDL Payload Data Library

PDSS Payload Data Services System

PGUIDD POIC to Generic User Interface Definition Document

POIC Payload Operations Integration Center

PP Point Pair

PRCU Payload Rack Checkout Unit

PSIV Payload Software Integration and Verification

RPSM Retrieval Processing Summary Message

SC State Code

SCS Suitcase Simulator

SSP Space Station Program

SSCC Space Station Control Center

SSPF Space Station Processing Facility

TCP Transmission Control Protocol

TReK Telescience Resource Kit

TRR TReK Receipt Response

TSC Telescience Support Center

UDP User Datagram Protocol

UDSM User Data Summary Message

URL Uniform Resource Locator

USOS United States On-Orbit Segment

VCDU Virtual Channel Data Unit

VCR Video Cassette Recorder

VPN Virtual Private Network

TREK-USER-003

 20

Appendix B Glossary
Note: This Glossary is global to all TReK documentation. All entries listed may not be

referenced within this document.

Application Programming Interface

(API)

A set of functions used by an application program

to provide access to a system’s capabilities.

Application Process Identifier

(APID)

An 11-bit field in the CCSDS primary packet

header that identifies the source-destination pair

for ISS packets. The type bit in the primary header

tells you whether the APID is a payload or system

source-destination.

Calibration The transformation of a parameter to a desired

physical unit or text state code.

Communications Outage Recorder System that captures and stores payload science,

health and status, and ancillary data during TDRSS

zone of exclusion.

Consultative Committee for Space

Data Systems (CCSDS) format

Data formatted in accordance with

recommendations or standards of the CCSDS.

Consultative Committee for Space

Data Systems (CCSDS) packet

A source packet comprised of a 6-octet CCSDS

defined primary header followed by an optional

secondary header and source data, which together

may not exceed 65535 octets.

Conversion Transformation of downlinked spacecraft data

types to ground system platform data types.

Custom Data Packet A packet containing a subset of parameters that

can be selected by the user at the time of request.

Cyclic Display Update Mode A continuous update of parameters for a particular

display.

Decommutation (Decom) Extraction of a parameter from telemetry.

Discrete Values Telemetry values that have states (e.g., on or off).

TREK-USER-003

 21

Dump During periods when communications with the

spacecraft are unavailable, data is recorded

onboard and played back during the next period

when communications resume. This data, as it is

being recorded onboard, is encoded with an

onboard embedded time and is referred to as dump

data.

Enhanced HOSC System (EHS) Upgraded support capabilities of the HOSC

systems to provide multi-functional support for

multiple projects. It incorporates all systems

required to perform data acquisition and

distribution, telemetry processing, command

services, database services, mission support

services, and system monitor and control services.

Exception Monitoring A background process capable of continuously

monitoring selected parameters for Limit or

Expected State violations. Violation notification is

provided through a text message.

Expected State Sensing Process of detecting a text state code generator in

an off-nominal state.

EXPRESS An EXPRESS Rack is a standardized payload rack

system that transports, stores and supports

experiments aboard the International Space

Station. EXPRESS stands for EXpedite the

PRocessing of Experiments to the Space Station.

File transfer protocol (ftp) Protocol to deliver file-structured information from

one host to another.

Flight ancillary data A set of selected core system data and payload

health and status data collected by the USOS

Payload MDM, used by experimenters to interpret

payload experiment results.

TREK-USER-003

 22

Grayed out Refers to a menu item that has been made

insensitive, which is visually shown by making the

menu text gray rather than black. Items that are

grayed out are not currently available.

Greenwich Mean Time (GMT) The solar time for the meridian passing through

Greenwich, England. It is used as a basis for

calculating time throughout most of the world.

Ground ancillary data A set of selected core system data and payload

health and status data collected by the POIC,

which is used by experimenters to interpret

payload experiment results. Ground Ancillary

Data can also contain computed parameters

(pseudos).

Ground receipt time Time of packet origination. The time from the

IRIG-B time signal received.

Ground Support Equipment (GSE) GSE refers to equipment that is brought in by the

user (i.e. equipment that is not provided by the

POIC).

Ground Support Equipment Packet A CCSDS Packet that contains data extracted from

any of the data processed by the Supporting

Facility and the format of the packet is defined in

the Supporting Facility’s telemetry database.

Huntsville Operations Support

Center (HOSC)

A facility located at the Marshall Space Flight

Center (MSFC) that provides scientists and

engineers the tools necessary for monitoring,

commanding, and controlling various elements of

space vehicle, payload, and science experiments.

Support consists of real-time operations planning

and analysis, inter- and intra-center ground

operations coordination, facility and data system

resource planning and scheduling, data systems

monitor and control operations, and data flow

coordination.

TREK-USER-003

 23

IMAQ ASCII A packet type that was added to TReK to support a

very specific application related to NASA’s Return

to Flight activities. It is not applicable to ISS. It is

used to interface with an infrared camera that

communicates via ASCII data.

Limit Sensing Process of detecting caution and warning

conditions for a parameter with a numerical value.

Line Outage Recorder Playback A capability provided by White Sands Complex

(WSC) to play back tapes generated at WSC

during ground system communication outages.

Measurement Stimulus Identifier

(MSID)

Equivalent to a parameter.

Monitoring A parameter value is checked for sensing

violations. A message is generated if the value is

out of limits or out of an expected state.

Parameter TReK uses the generic term parameter to mean any

piece of data within a packet. Sometimes called a

measurement or MSID in POIC terminology.

Payload Data Library (PDL) An application that provides the interface for the

user to specify which capabilities and requirements

are needed to command and control his payload.

Payload Data Services Systems

(PDSS)

The data distribution system for ISS. Able to route

data based upon user to any of a number of

destinations.

Payload Health and Status Data Information originating at a payload that reveals

the payload’s operational condition, resource

usage, and its safety/anomaly conditions that could

result in damage to the payload, its environment or

the crew.

Payload Operations Integration

Center (POIC)

Manages the execution of on-orbit ISS payloads

and payload support systems in

coordination/unison with distributed International

Partner Payload Control Centers, Telescience

Support Centers (TSC’s) and payload-unique

remote facilities.

TREK-USER-003

 24

Payload Rack Checkout Unit

(PRCU)

The Payload Rack Checkout Unit is used to verify

payload to International Space Station interfaces

for U.S. Payloads.

Playback Data retrieved from some recording medium and

transmitted to one or more users.

Pseudo Telemetry (pseudo data) Values that are created from calculations instead of

directly transported telemetry data. This pseudo

data can be created from computations or scripts

and can be displayed on the local PC.

Remotely Generated Command A command sent by a remote user whose content

is in a raw bit pattern format. The commands

differ from predefined or modifiable commands in

that the content is not stored in the POIC Project

Command Database (PCDB).

Science data Sensor or computational data generated by

payloads for the purpose of conducting scientific

experiments.

Subset A collection of parameters from the total

parameter set that is bounded as an integer number

of octets but does not constitute the packet itself.

A mini-packet.

Super sampled A parameter is super sampled if it occurs more

than once in a packet.

Swap Type A flag in the Parameter Table of the TReK

database that indicates if the specified datatype is

byte swapped (B), word swapped (W), byte and

word swapped (X), byte reversal (R), word

reversal (V) or has no swapping (N).

Switching A parameter’s value can be used to switch between

different calibration and sensing sets. There are

two types of switching on TReK: range and state

code.

TREK-USER-003

 25

Transmission Control Protocol

(TCP)

TCP is a connection-oriented protocol that

guarantees delivery of data.

Transmission Control Protocol

(TCP) Client

A TCP Client initiates the TCP connection to

connect to the other party.

Transmission Control Protocol

(TCP) Server

A TCP Server waits for (and accepts connections

from) the other party.

Telemetry Transmission of data collected form a source in

space to a ground support facility. Telemetry is

downlink only.

Telescience Support Center (TSC) A TSC is a NASA funded facility that provides the

capability to plan and operate on-orbit facility

class payloads and experiments, other payloads

and experiments, and instruments.

User Application Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User Product.

User Data Summary Message

(UDSM)

Packet type sent by PDSS that contains

information on the number of packets sent during a

given time frame for a PDSS Payload packet. For

details on UDSM packets, see the POIC to Generic

User IDD (SSP-50305).

Uplink format The bit pattern of the command or file uplinked.

User Datagram Protocol (UDP) UDP is a connection-less oriented protocol that

does not guarantee delivery of data. In the TCP/IP

protocol suite, the UDP provides the primary

mechanism that application programs use to send

datagrams to other application programs. In

addition to the data sent, each UDP message

contains both a destination port number and a fully

qualified source and destination addresses making

it possible for the UDP software on the destination

to deliver the message to the correct recipient

process and for the recipient process to send a

reply.

TREK-USER-003

 26

User Product Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User

Application.

Web Term used to indicate access via HTTP protocol;

also referred to as the World Wide Web (WWW).

